EVERSHEDS SUTHERLAND

Identifying the Best Technologies to Secure Ready Dispatchability to Renewable Energy

Different customer requirements impacting on technology and system design

5 September 2017

Jean-Pascal Boutin

Partner

Storage customer base

- Grid operator
- Generator support
- End user support

Grid operator requirements

Storage drivers:

- decarbonisation
- intermittent renewable generation roll out
- network upgrade investment deferral
- changing demand profile e.g. electric vehicles

Storage technology drivers:

- response systems
 - rapid or instantaneous power for short periods of time
- reserve systems
 - power over an extended period and potentially at a larger scale

Examples of grid operator requirements

National Grid UK

- Multiple contracts
 - frequency stability 1 to 30 second response with 30 minute discharge
 - fast reserve to deal with sudden demand increase or generation loss – 2 minute response with 5 to 15 minute discharge
 - short term operating reserve 20 minute response with 2 hour discharge
 - capacity market to secure existing and new capacity -4 hours response with 2 - 4 hours discharge
- Enhanced Frequency Response Tender
 - 100% active power output at 1 second or less of registering frequency deviation - up to 30 minutes dispatch
 - 8 bids successful, 10 to 49 MW, £7/MW/hr to £12/MW/hr all lithium-ion batteries

Examples of grid operator requirements

Jordan 12 MWH lithium-ion

- PPA with IDECO and colocation with PV
- peak shaving capabilities to increase stability of local grid and enhance PV output

Ireland

 EirGrid - grid stability to cater for higher levels of renewable energy

Grid operator requirements

Large scale storage

- traditional space for pumped hydro
- potential for batteries to provide large scale
- potential for Compressed Air Energy Storage
 - 330MW Northern Ireland salt caverns

Renewable generator support

Colocation with wind and PV

- storage used to store energy during peak generation and deliver energy during periods of user demand
- grid curtailment
 - energy storage to store energy which otherwise be lost due to grid curtailment
 - especially relevant where there are constraints on distribution networks, especially in high renewable energy regions/remote locations/islands
 - high upgrade costs for grid reinforcement

Technology type driven by interfacing with onsite generation, offtaker and/or grid requirements

End User Support

Energy supply stability

Colocation with renewables:

- match customer profile
- self-sufficiency/off grid

Variable import tariffs:

- avoid importing at peak prices
- exporting at peak prices

Technology type driven by interfacing with onsite generation, customer demand characteristics and/or grid requirements

EVERSHEDS SUTHERLAND

Jean-Pascal Boutin

Partner

Tel: +44 29 2047 8265 Mob: +44 774 847 5856

jeanpascalboutin@

eversheds-sutherland.com

eversheds-sutherland.com

This information pack is intended as a guide only. Whilst the information it contains is believed to be correct, it is not a substitute for appropriate legal advice. Eversheds Sutherland (International) LLP can take no responsibility for actions taken based on the information contained in this pack.