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* Energy storage background
* NREL ENDURING Project for Long Duration Energy Storage (LDES)

 NREL Concentrating Solar Power (CSP) development with energy
storage

NREL | 2



Thermal Energy Storage Position in Energy Storage
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TES can provide grid-scale LDES storage without the geographical
restrictions of PSH and CAES, but is under represented.



TES Types for Power Generation
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Solid storage media can be obtained from nature with little processing, and
the resources are abundant, low cost, and environmentally compatible.



* Energy storage background
* NREL ENDURING Project for Long Duration Energy Storage (LDES)

 NREL Concentrating Solar Power (CSP) development with energy
storage
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Economic Long-Duration Electricity Storage by Using Low-Cost

Thermal Energy Storage and High-Efficiency Power Cycle (ENDURING)

The ENDURING LDES as a standalone
TES for grid-scale electricity storage
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Project Overview:

* Phase 1 three-year $2.8 million funding from
the U.S. Department of Energy’s Advanced
Research Projects Agency-Energy (ARPA-E)
Duration Addition to Electricity Storage (DAYS)
Program, and $430K cost share.

= The project will develop components for cost
and performance targets and for demonstrating
the technology to market.

=  The ENDURING LDES system aims at providing
electricity for several days with low-cost grid
storage, to enable the integration of large-scale
variable wind and solar power.



ENDURING Project Team
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ENDURING System Features

ENDURING LDES operates as a thermal battery, in a large scale.
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Power System

Aim at 10-100 hours of storage, 60 - 300 MWe (scalable).

Increase cycle efficiency with ultrahigh temperature (>1,100°C) particle TES.
Develop novel fluidized bed heat exchanger with gas/particle direct contact.
Adapt GE’s high-efficiency turbine system for efficient Brayton combined cycle.
Leverage the potential assets from retired thermal power plants.

Site throughout the United States without geographic restrictions.



Storage Media: Stable,

Inexpensive Particles

| Metic | _Sand _|Sintered Bauxite

Weight (kiloTon) 189

Cost (SMM) 4.72 53.68
Cost ($/kWht) 0.09 0.98
Volume (m?3) 71,000 42,000
Total cost (SMM) 63.32 37.14
Cost (S/kWht) 1.16 0.68
Capital cost (S/L) 0.89 0.89
TES Cost Sum ($/kWht) 1.25 1.67
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Preliminary estimates of the TES cost for a 300-MWe, 100-hour
LDES system (As a comparison, a salt TES at ~255/kWht)

NREL | 9



Roundtrip Efficiency — a Key Parameter for Energy Storage
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In hours to days energy storage, TES can get a competitive roundtrip efficiency
for electricity storage. (* based on PTES overview, Benato, 2018) 10



Performance and Cost Targets
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Targeted LCOS <5¢/kWh-cycle at 2.5¢/kWh charging electric price
with the decoupled power and duration
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* Energy storage background
* NREL ENDURING Project for Long Duration Energy Storage (LDES)

 NREL Concentrating Solar Power (CSP) development with energy
storage:

— Molten-salt pathway
— Gas-phase pathway
— Pumped thermal energy storage technology
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Project Objectives:

* NREL leads a multi-national team to
test the next generation CSP
technology by advancing molten-
salt power tower technology to
higher temperatures and
efficiencies.

» The goal of the work is to design,
develop, test, and validate at 2-
MW1, an integrated system that
uses a liquid salt.

» Map path to full-scale
commercialization through system
simulation and industry
collaboration
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Gen3 CSP: Liquid-Phase Team
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Gen3 CSP Gas-Phase System Development

 Gen3 Integration FOA Topic 1 award
* 2-year, $9.4M DOE funding (51.9M cost share)
* Project lead: Brayton Energy
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Project Objectives

Develop the first integrated high-

pressure gas phase power tower

system with particle storage.

* Reduce risk associated with
integrated system operation,
thermal storage technology
performance, and receiver
lifetime and efficiency
demonstration.

« Leverage existing components
and develop new technology
on gas circulator, gas-to-
particle heat exchangers, and
solid media insulation and
storage.



Gen3 CSP: Gas-Phase Project Team
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Integrated Pumped Thermal Storage and Power Cycle
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» Solar availability is inherently variable. The
novel storage system combines CSP power
cycles — “Pumped Thermal Energy
Storage”, with packed bed/liquid salt as
storage media.

* The cycle employs ‘sub-ambient heat
rejection’ to reduce effect of high ambient
temperatures.

* The project develops transient
thermodynamic and economic models, and
assess ‘value’ with grid analysis tools.
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Increase efficiency, dispatchability, and flexibility of CSP through
integration with a novel PTES storage system.
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CSP-PTES Project Team
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Thank you

Zhiwen Ma, 303-275-3784 Questions?

Email: Zhiwen.ma@nrel.gov
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