

Combining Geospatial and Mathematical methods to support Electrification in rural areas.

Tractebel's Geospatial Electrification Tools

Dr. Ibrahim ABADA Ibrahim.abada@engie.com

Extensive electrification planning

The electrification planning is made quicker thank to Geospatial Rural Electrification Planning Suite (GREPS)

What:Determine the best electrification solution forrural areas among grid extension, mini-gridcreation and individual solutions consideringalso renewables generation.

How: Geospatial analysis coupled with a load forecast to determine the best electrification solution between on- and off-grid based on LCOE calculation.

Output: Detailed rollout planning for grid densification, grid extension, renewable mini-grids and standalone solutions.

Successful studies in the last two years

Few examples...

Planned electricity access rate: 16% → 80% access over 15 years

 $6\% \rightarrow 30\%$ access over 12 years

 $31\% \rightarrow 100\%$ over 11 years

When the mini-grid option is the cheapest and when one takes a closer look at one village...

From a technical point of view to develop a minigrid business in a new village, we have to:

When the mini-grid option is the cheapest and when one takes a closer look at one village...

From a technical point of view to develop a minigrid business in a new village, we have to:

TAOS.ai in a nutshell

A Tool for Autonomous and Optimized small-size Electricity Systems: TAOS.ai

The load is forecasted at the building level, based on previous electrification projects

Start from a village satellite image...

Few inputs: digitalized village map, size of houses, roof types, field data

∞ ... To get results via machine learning techniques:

Using mathematical programming techniques, TAOS.ai estimates the sizing and cost of the mini-grid project

- Minimization of total electrification cost : investment, installation and operating costs of grid and supply assets simultaneously -> this is not a simulation approach
- Constraints
 - Demand satisfaction
 - Technical constraints (PV, battery, diesel genset, SHS)
 - Reserve requirement
 - Power flow (linearized)
- Outputs
 - Optimal sizing of supply and grid reticulation
 - Total village electrification cost
- CAPEX/connection rate

This optimization uses the demand forecast performed before. Sensitivities with respect to the demand are also possible.

A comparison with a classical hand-made design in a test village

Consumption forecast	TAOS.ai	Observed	
Daily demand (kWh)	58,58	63,5	-
Peak demand (kW)	12	4,5	-
	TAOS.ai	Hand made	CAPEX saving
Generation sizing			
PV (kWp)	17	29,2	42%
Battery (kWh _{usable})	34	73,7	46%
Grid design			
Number of poles	225	275	20%
Cable distance (km)	8,3	10,2	20%