TRACTEBEL

Extensive electrification planning

Capacity building (for local autonomy)

The electrification planning is made quicker thank to Geospatial Rural Electrification Planning Suite (GREPS)

What: Determine the best electrification solution for rural areas among grid extension, mini-grid creation and individual solutions considering also renewables generation.How: Geospatial analysis coupled with a load forecast to determine the best electrification solution between on- and off-grid based on LCOE calculation.Output: Detailed rollout planning for grid densification, grid extension, renewable mini-grids and standalone solutions.

Stand-alone systems (SHS)

Successful studies in the last two years

Few examples...

Planned electricity access rate:

$6 \% \rightarrow 30 \%$ access over 12 years

$31 \% \rightarrow 100 \%$ over 11 years

When the mini-grid option is the cheapest and when one takes a closer look at one village...

From a technical point of view to develop a minigrid business in a new village, we have to:

Select a site

Count the houses in the village

But from site selection to customer selection:

When the mini-grid option is the cheapest and when one takes a closer look at one village...

From a technical point of view to develop a minigrid business in a new village, we have to:

Select a site

But from site selection to customer selection: many tasks are manual

TAOS.ai aims at helping the development of mini-grids by automatizing most of this process using Al and Optimization

TAOS.ai in a nutshell

A Tool for Autonomous and Optimized small-size Electricity Systems: TAOS.ai

The load is forecasted at the building level, based on previous electrification projects

Start from a village satellite image...

Few inputs: digitalized village map,
size of houses, roof types, field data
${ }^{\star}$... To get results via machine learning techniques:

Using mathematical programming techniques, TAOS.ai estimates the sizing and cost of the mini-grid project

- Minimization of total electrification cost : investment, installation and operating costs of grid and supply assets simultaneously -> this is not a simulation approach
- Constraints
- Demand satisfaction
- Technical constraints (PV, battery, diesel genset, SHS)
- Reserve requirement
- Power flow (linearized)
- Outputs
- Optimal sizing of supply and grid reticulation
- Total village electrification cost

This optimization uses the demand forecast performed before.
Sensitivities with respect to the demand are also possible.

A comparison with a classical hand-made design in a test village

Consumption forecast	TAOS.ai	Observed	
Daily demand (kWh)	58,58	63,5	-
Peak demand (kW)	12	4,5	-
TAOS.ai	Hand made	CAPEX saving	
Generation sizing			
PV (kWp)	17	29,2	$\mathbf{4 2 \%}$
Battery (kWh usable $)$	34	73,7	$\mathbf{4 6 \%}$
Grid design			
Number of poles	225	275	$\mathbf{2 0 \%}$
Cable distance $(k m)$	8,3	10,2	$\mathbf{2 0 \%}$

