

Minigrid Viability Gap and Structures for Electrification

Sam Booth, Xiangkun Li, and Tim Reber U.S. National Renewable Energy Laboratory

Mark Newton United States Agency for International Development

June, 2019

Background

Goal: Achieve universal energy access in Ghana, in part with mini-grids

Issue: There is a viability gap between national tariff and mini-grids costs

Scope: Analyze viability gap and possible structures and considerations for energy access programs

Purpose: Provide information to support Government of Ghana decision making

POWER

AFRIC

National Access Rate: Household = 81.4% Communities = 84%

Results: Example Portfolio

- 200 systems
- 6.8 MW PV
- 15 MW storage
- Totals
 CAPEX = \$21 M
 Life cycle cost = \$36 M
 Tarif revenue = \$11 M
 Viability gap = \$25 M
 (~\$500+/connection)
- LCOE
 Cost- \$0.63
 Tariff- \$0.19
 Viability gap- \$0.43

A Range of Options for Subsidy Design

• Subsidize to cover capital or operational costs; either for generation and/or distribution

