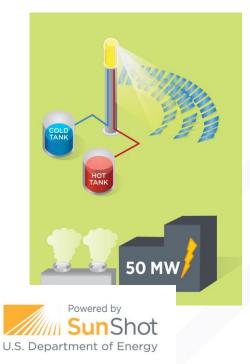
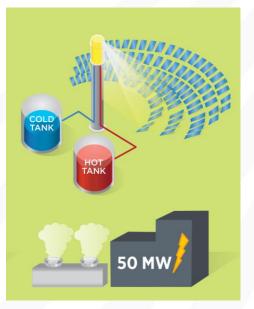

SolarDynamics

Dispatchable Solar Power

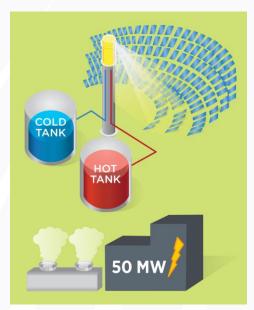

Adapting CSP to modern grid and off-taker needs

Hank Price, Managing Director Solar Dynamics LLC

Copyright 2020 Solar Dynamics LLC


CSP: Flexible Designs for an Evolving Grid

'Peaker' 4 to 6 hours of storage Capacity Factor <20%


'Intermediate'

6 to 9 hours of storage Capacity Factor 30 to 50%

'Baseload'

≥12 hours of storage Capacity Factor >50%

Hybridization of CSP

• Hybridization with fuel backup

- 5 SEGS plants demonstrated >100% On-peak capacity factor each for 15 years continious.
- New studies show that 2-10% fuel backup could guarantee 100% resource availability for peak demand.
- Fuel back up can be from green fuels.
- Hybridization with PV
 - PV can be collocated
 - PV can be used for internal parasitic consumption (DEWA)
 - PV can be used to augment thermal storage (Midelt concept)
- Grid hybridization
 - Power from the grid can be used to charge thermal storage
 - Could be a form of regulation or to consume low or negatively priced energy.

Arizona Public Service 2017 Peaking Capacity RFP

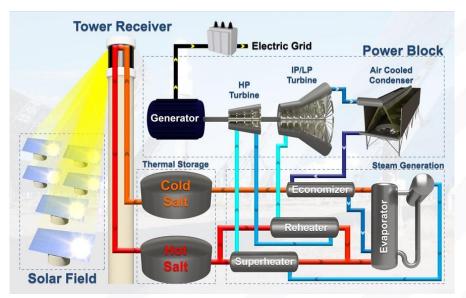
PM PM PM PM PM AM PM PM PM PM PM PM PM 3 4 5 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 2 6 7 8 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Time of Day Relative Net Load Heat Map

Option 1: Time of Delivery Power Purchase Agreement

- Preferred = 3X Less Preferred
- More Preferred = 9x Less Preferred
- No power during "No Must Take Energy

More Preferred Preferred Less Preferred No Must Take Energy


Option 2: Thermal Tolling Power Purchase Agreement

- Capable of operating for **4 hours at 46°C** at 100% contract capacity.
- Dispatchable by APS with AGC (load following capability)
- Stable operation at a 25% loading.
- Capable of at least 2 starts per day.
- · Faster starts and ramp rates are better

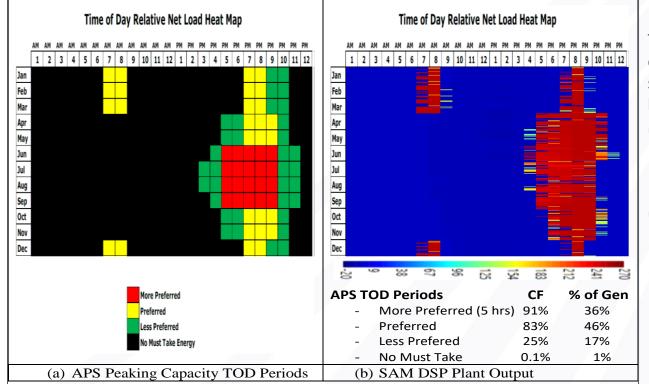
U.S. DOE SunShot: Dispatchable Solar Power Plant Tech 2 Market

Dispatchable Solar Power (DSP) Plant

Uses Conventional Molten-Salt Tower Technology

- Market Assessment
- DSP Operational Requirements
 - Fast Starts & Ramps
 - Store solar energy during the day
 - Dispatch power anytime during next 24 hrs
- Cost Reduction
 - Standardized design
 - Power Parks
 - Compressed EPC schedule
- Commercialization
 - Conceptual engineering design and EPC cost estimate
 - Vendors identified for all key equipment
 - Address tower sensitive development issues
 - Outreach to Developers, EPCs, Utilities

BlüNebü



Dispatchable Solar Power Plant Design

DSP Configuration	Summer On-Peak 5 hours	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>
Turbine Nominal Gross Power Turbine Nominal Net Power Power cycle gross thermal efficiency Power cycle cooling system Power cycle design ambient temperature	250 MW _e 230 MW _e 44% hybrid 115°F	
Solar Receiver design duty Solar Multiple Tower Optical Height	400 MW _t 0.65 560 ft	
Total Heliostat Area Solar Field Area Storage Capacity (MWh electric) Storage Capacity (hrs of turbine op.)	700,000 m ² 640 acres 1,150 MWh _e 5 hrs	
Annual Solar Resource Annual Gross Capacity Factor 1st year Net Generation	2,685 kWh/m ² 16.5% 334.2 GWh _e	

DSP Plant Output for APS TOD Schedule

SolarDynamics

This shows the modeled output of a DSP plant optimized for a specific TOD schedule requested by Arizona Public Service (APS).

- The plant achieves high capacity factors during the more preferred and preferred TOD periods 91% & 83%.
- Approximately 82% of the total energy from the plant is delivered during these periods.

DSP Plant vs. Combustion Turbine in Arizona

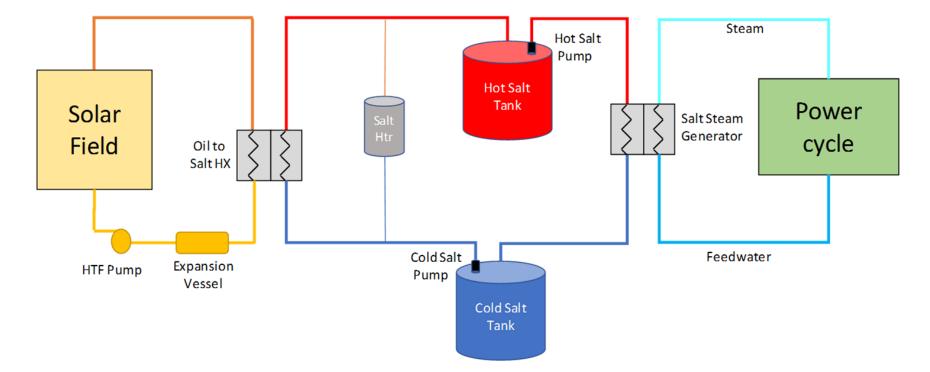
Capacity Cost [\$/kW-yr] 300 250 200 182 □ Fixed O&M & Ins. 150 123 Taxes 100 Capital 50 0 Frame CT **Aero Derivative** @ 16.5% CF СТ @ 16.5% CF

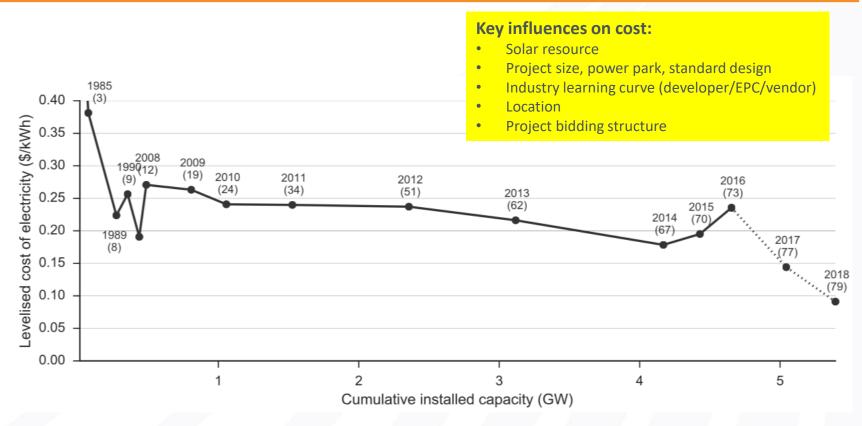
SolarDynamics

DSP Plant vs. Combustion Turbine in Arizona

300 276 283 249 250 -231 225 Carbon - Mid 192 200 Fuel ■ Variable O&M 150 Gas Infrastructure □ Fixed O&M & Ins. 100 Taxes Capital 50 0 Frame CT **Aero Derivative DSP** Baseline **DSP Cost DSP Cost** DSP Cost @ 16.5% CF СТ Cost Case Reduction Reduction + **Reduction +** @ 16.5% CF 30% ITC 30% ITC **Power Park Power Park** 30% ITC 10% ITC

All-In Capacity Cost [\$/kW-yr]


BlüNebü


SolarDynamics

Conceptual Design for Trough Peaker

SolarDynamics

CSP Learning Curve

Source: Lillestam, Labordena, Patt and Pfenninger, Nature Energy, 2017

SolarDynamics

Hank Price, P.E.

Hank.Price@SolarDynLLC.com

Thanks to U.S. Department of Energy SunShot Tech 2 Market Program for funding this work.

Dispatchable Solar Power Plant - Final Report https://www.osti.gov/biblio/1418902-dispatchable-solar-power-plant-project