

WEBINAR

Maximizing utilization and performance of renewable energy through smart technology and energy storage systems

Speakers

Jan Andersson

Wärtsilä Market Development Manager

Luke Witmer

Wärtsilä General Manager, Data Science

WHAT IS GEMS?

AN INTEGRATED SOFTWARE PLATFORM

THAT WÄRTSILÄ ENERGY STORAGE & OPTIMIZATION (ES&O) DEVELOPED FOR INTELLIGENTLY OPERATING LARGE POWER PLANTS, DISTRIBUTED ENERGY RESOURCES AND ISLAND MICROGRIDS.

ISLAND GRID+ IT AND O&M ARCHITECTURE

GEMS PPC

- Dispatch Optimization
- Tertiary Control
- Secondary Control
- Emergency
- Local HMI
- Load Forecast
- Renewable Forecast

GEMS FLEET DIRECTOR

- Weather Forecast Subscription
- Data Storage and Analytics
- Remote O&M

GRID CONTROL, INTEGRATION AND OPTIMIZATION

Boosts wind penetration from ~20% to 33% with addition of energy storage and GEMS control system

Will eliminate the dependency on HFO; **fuel consumption** decreased by 5%

Delivers both economic and environmental benefits; CO₂ emission decreased by 8%

Dispatch optimization, solving unit commitment

Tertiary control, secondary control

Spinning reserves compliance (N-1)

Load forecasting, renewable forecasts

Grid forming battery inverters

ESS rated power less than average island load

Spinning reserves, automatic (un)curtailment of renewables, and automated engine dispatch for the island of Bonaire, population ~19,000

The **existing power plant** is running on 5 HFO engines, 3 back up diesel engines

The **6 MW/6 MWh energy storage** system includes batteries, inverters and power electronics

Integrates 13 **wind** turbines while simultaneously optimising multiple generation assets WÄRTSILÄ

GRACIOLICA LDA, AZORES (PORTUGAL)

GRID CONTROL, INTEGRATION AND OPTIMIZATION

Boosts renewable energy consumption

Will **eliminate the dependency** on 17,000 liters of diesel per month

Delivers both economic and environmental benefits

Dispatch optimization, solving unit commitment

Tertiary control, secondary control

Spinning reserves compliance (N-1)

Load forecasting, renewable forecasts

Grid forming battery inverters

Capable of operating grid without diesel gensets running

The Graciosa Hybrid Renewable Power Plant will enable **1 MW** of **solar**, **4.5 MW** of **wind power** and **6 MW / 3.2 MWh energy storage**

Integrates renewable energy sources while simultaneously optimising multiple generation assets

MINIMUM LOADING AND REACTIVE POWER REALITIES

Consider a few scenarios:

- 1: Historical
- 2: Moderate renewables, providing unity PF at site
- **3:** Moderate renewables, producing reactive power proportional to real power, in line with load PF
- 4: High renewables

Microgrid Stacked Power Plot Load Meter AC Real Power Battery Power Plant AC Real Power Wind Power Plant AC Real Power

PV Power Plant AC Real Power 📕 Diesel Power Plant AC Real Power

GRID FREQUENCY AND **VOLTAGE** MAINTAINED BY ALL GRID FORMING ASSETS (DIESEL GENERATORS AND VSG CAPABLE GRIDSOLV UNITS IN DROOP MODE)

ROBUST CONTROL ARCHITECTURE OF:

- Primary Control (droop) to rapidly stabilize Frequency and Voltage
- Secondary Control to maintain F and V targets
- Tertiary Control to optimize dispatch, curtailment, and battery SOC

Energy Transition Lab A glimpse of the future

Wärtsilä Energy Transition Lab

wartsila.com/energy/transition-lab

Free tool to analyse COVID-19 impact on European power systems

> Based on ENTSO-E data

> > **Energy Storage and Optimisation**

High-level view of Germany

High-level view of Germany

balance

Day ahead

20 April: Germany could have been powered by renewables only

Q&A

CONTAINER STANDARDIZATION

A cost-effective solution for meeting customer energy needs while adequately protecting their hardware assets

The standardized storage enclosure consists of one ISO 40' unit and includes:

- Batteries
- Safety system
- Fire Safety System
- Power distribution
- Air conditioning system

GEMS UI features

Real-time visibility at one second intervals

- Global Fleet
- Plant
- Equipment

Historian and data reports Alerts and push notifications Automation configurations Machine learning monitoring

DASHBOARD CONFIGURA	FION REPOR	RTS SLD									56	roh	۹ ۵	• O Luke
sa Graciosa														
a Q Alarma Z Events Co	AC VOLTAG	at		FREQU	IENCY			REAL POWER	LOAD		DIFEC	TIVE SOC		
Critical Fault 15.15		9 kV		49.9	180 Hz			-1.932 M	W		76.3	2%		
TIVE ALARMS Inverter unavailable. Please check if it powered on.	Automated Greensmith Granosa Hybrid MicroCold Operation													
Inverter unavailable. Please check if it is powered on. Today at 11:02 AM PV Inventer 33		Frequency			< Q >	@ Last	6 Hours Refresh every 1m (8)							
Inverter unavailable. Please check if it powered on. Today at 11:02 AM PV in	15 werter 38	+0.40 +0.20 50 Hz					~							
Inverter unavailable. Please check if it powered on. Today at 11:02 AM PV II	is werter 29	-0.40 Voltage	05:30	D5 AM	06:30	07 AM	07:30	OS AM	08:30	09 AM	09:30	10 AM	10:30	11 AM
powered on. Today at 11:02 AM PV In	is werter 36	+0.50 +0.25 15 kV												
Inverter unavailable. Please check if it powered on. Today at 11:02 AM PV In	15 worter 39	-0.50	05:30	OS AM	96:30	07 AM	07:30	OS AM	08:30	09 AM	09:50	10 AM	10:30	11 AM
Inverter unavailable. Please check if it powered on. Today at 11:02 AM PV in	is werter 40	Renewable	Penetration											_
powered on. Today at 11:02 AM PV I	15 sverter 34	20.0 %	05:30	06 AM	06:30	07 AM	07:30	OB AM	06:30	09 AM	09:50	10 AM	10:30	11 AM
Inverter unavailable. Please check if it powered on. Today at 11:02 AM PV In	is weter 37	Asset Loadi	ng			Solar		ESS	Load					
Inverter unavailable. Please check if it powered on. Today at 11:02 AM PV In	is werter 30	65.9% 1.511 MW				34.1% 0.783 NW		15.1% 0.344 M	84.9% 1.932 M	w				
3 More Alarms	>	ESS Lo	ad 🔳 Diesel	2.294 M	W Generatio	in .				2.27	6 MW Conse	Imption		
		Micro	Grid											DETAILS
		Frequency AC Voltage 50.000 Hz 15.161 K ³					kV	/ -1.932 MW						
	🕑 Engine	e Scheduli	ng Serv	rice									DETAILS	
		Last Update Tim Jul 19, 20	* 19 11:05:3	36 AM										
		🕑 Load P	orecast											DETAILS
		Last Update Tim Jul 19, 20	° 19 11:05:0	MA 00										
		🕑 Wind F	Forecast											DETAILS
		Jul 19, 20	° 19 11:05:0	09 AM										
		🕑 PV For	recast											DETAILS
		Jul 19, 20	* 19 11:05:1	IO AM										
62012-2019 Greensmith Energy Management Sys	toma													

- Economic Dispatch
 Problem
- Unit Commitment Problem

ENGINE SCHEDULING BASED ON ROLLING 24-HOUR FORECASTS

5-MINUTE SCHEDULE

Copyright ©2012-2019 Greensmith Energy Management Systems

Status

WÄRTSILÄ

GEMS OPTIMIZATION MODULES SOLVES:

- Economic Dispatch
 Problem
- Unit Commitment Problem

ENGINE SCHEDULING BASED ON ROLLING FORECASTS, E.G.12-HOURS AHEAD

GEMS HIGHLIGHTS

SINGLE SW PLATFORM for energy storage, wind, solar, engine and hybrid power plant operations—it is an OS

INTELLIGENT OPERATIONS

by combining industrial control with modern machine learning

HARDWARE NEUTRAL PLUG-IN

ARCHITECTURE for equipment including batteries, PCS, and engine generators from different vendors

DISTRIBUTED COMPUTING

by combing **ON-SITE** Power Plant Controls with **OFF-SITE** solution cloud

PLATFORM AS ASERVICE

natively supports application extensions, customization and system integration