

Nokia

Energy - mission-critical communications

February 2021

The Disruption: Are You Ready?

Nokia Business & Technology Groups

We create the technology to connect the world

Mobile Networks (MN)

We help meet customer demands for mobile content and connectivity

Fixed Networks (FN)

We help our customers to deliver the best broadband experience to everyone, everywhere

IP/Optical Networks (ION)

We help our customers connect everyone and everything to the cloud, every time

Nokia Enterprise

We enable the digitalization of asset-intensive industries with mission and business critical needs

Global Services (GS)

We help our customers navigate through complexity and transform their business

Nokia Software

We help our customers enrich and monetize digital experiences through the power of connected intelligence

Nokia Technologies

We license intellectual property, including our patent portfolio and technologies as well as the Nokia brand

Nokia Bell Labs

We are solving great industry challenges with disruptive inventions

Industry 4.0 is driving new network requirements for asset intensive industries

Nokia has powered 1300+ of these mission critical networks globally 220+ in industrial grade private wireless...

Nokia legacy in critical industry networks +35 years of commitment to the industry

Empower your new energy future

Nokia Bell Labs Future X architecture for power utilities

Needs

Enhance existing operations and automate decision making while applying new operations applications and business models.

Support all devices and applications while optimizing existing investments into a stronger foundation for the future.

Massively extend to the edge for DER, automation, critical decision-making and new services.

Adopt new energy models, leverage new markets and move closer to your consumer.

4.0 Workforce efficiency A Grid **Business Applications** optimization optimization Cognitive analytics Industrial Digital Digital Value Platforms automation operations Distributed Hybrid Local edge Multi-cloud Dynamic cloud edge Security Dedicated deep connectivity Smart (wireless/wired) network fabric

Renewables integration, automation and new business models

Leverage digitalization,

automation and Industry

SIEMENS

TOSHIBA

Schneider Electric

ALSTOM

DIMAT

sprecher automation

Your gateway to accelerate communications innovation

For DER, cyber security and new business models

Nokia Energy Innovation Center

- Testing and demonstrations of solutions, features and management
 - Maintain business continuity: management,
 QoS, availability, ...
 - New priorities: Private wires use cases, security and asset optimization
 - Prepare for new normal: new remote worker capabilities, SD-WAN, ...
- Remote or onsite

Connect your lab, power your transformation, fuel your future

• Utility executive forum

Intercontinental innovation

University of Strathclyde Dynamic Power Systems Laboratory

Innovation hub – define, test, validate and de-risk

Why Nokia?

+200

Utilities with Nokia solutions

+55

Utilities with Nokia solutions for new services

Substation harden IP/MPLS routers with 7 industry awards

+1400

Teleprotection circuits in service on IP/MPLS

NOKIA Bell Labs

NERC/CIP

Compliant end-toend cyber security Complete grid communications solutions with professional services

€ 23.3bn

Nokia revenues

EIC

Energy Innovation Centre

MPLS

Market leader

DWDM

Market leader

P-LTE

Market leader

SDN

Market leader

NOKIA

WÄRTSILÄ POWER PLANT FROM THE INSIDE

JORDAN, IPP3 (573 MW)

7200 MW capacity installed in the Middle East at 300+ locations

WARTSILA EXPERTISE CENTRE NETWORK

- Full coverage global network of Expertise Centres
- 450 power plants connected
- 53 installations monitored from Dubai Expertise Centre
- 24/7 operation
- 100+ power plants supported during COVID-19

Virtual reality googles & smart point-R to provide full support to site crews from the other side of the World

GEMS: Software is at the heart of integration

Comprehensive software suite for planning, monitoring & optimization

Cloud-based computing enables to constantly building in new data to refine and adjust predictions

GEMS Machine Learning intelligent by predictions

© Wärtsilä

Al-based energy and flexibility management

Core idea: extend the AI approach that has worked in games and simulations to real-life energy systems.

Data-efficient Deep Learning technologies are used for creating models of energy systems, which can be then used by Al planning and decision-making algorithms to optimize energy usage according to a custom criteria.

10/02/2021 VTT – beyond the obvious

Machine learning used to create digital twins of the real world systems

Data-efficient and physics-aware deep learning for energy system modelling

- Combines the best parts of deep learning and physics-based modelling
- Stacked Booster Network (SBN)
 - Innovate Neural Network
 Architecture style for energy system modelling
- Physics-based building models used for pre-training the SBN model
 - I.e., we use the physics-based model to teach the physics to the deep learning model

Taking power generation capacity forecasts to a whole new level

Online software crafted for **Fingrid** – Finland's transmission system operator – solves a challenge-well known by many grid operators. CapFor precisely forecasts the available production capacity of CHP and nuclear power plants.

Delivering daily forecasts up to 7 days in advance

"VTT connected its machine learning and energy system knowhow with novel ideas to create a unique solution answering the electricity market's pressing needs."

Learn More

Aggregation methodology

- The idea behind the aggregation was to allow for an educated guess on the electricity production of small plants (<50MW)
- Small plants were clustered based on similar characteristics and behaviours
- Electricity production data (dependent on weather/location) could be estimated and scaled in terms of the plants' capacities
- Approach based in finding the error in production and assigning this error proportionally to the remaining plants

10/02/2021 VTT – beyond the obvious 27

Handling missing data

- Production curves for aggregated plants location, type of production and temperature dependency - Several plants still missing
- Associated all plants to a closest weather measurement station, guaranteeing that all plants have weather measurements
- Approach based in finding the error in production and assigning this error proportionally to the remaining plants
- Plants without data would be bundled with plants that had historical production information

10/02/2021 VTT – beyond the obvious

Supermarket electric load forecasting @ S-Markets in Oulu

VTT

Forecasting tasks

- Total load and various sub-metering points (e.g. freezers & coolers, HVACs, etc.)
- Forecast length: 2h-36h
- Data resolution: 15min, 60min
- Evaluated methods:
 - Statistical and machine learning methods
 - ARIMA, SVR
 - Neural networks:
 - MLP, LSTM, GRU, 1D-CNN
- Results
 - Forecasting errors of best models varied between 3-16% depending on the forecasting length and metering point
 - SVR and LSTM were the best performing models in the study

Supermarket flexibility management

- Flexibility management study with data from S-Market Tuira using a simulated battery (20 kWh capacity)
- Optimization targets
 - Peak load (power tariff)
- Approach:
 - Model-predictive control with deep learning based load and generation forecasting
 - Trust-region based optimization methods
- Results:
 - 8.4% reduction of peak loads on average

Energy Management Agent @ VTT Test
Apartment

***Index open for the label of the field of the fi

VTT

Real time load and flexibility forecasting

Solar panel energy generation forecasting

- Forecasting based on FMI weather forecasts:
 - Temperature, Humidity, WindDirection, WindspeedMS, Pressure, TotalCloudCover

Forecasting 1-24h ahead energy production at VTT Oulu premises

1 hour ahead forecast 11.7% (NRMSE)

bey ond the obvious

https://www.vttresearch.com/en